A nitrate reductase activity in *Rhodopseudomonas capsulata* linked to electron transfer and generation of a membrane potential

Alastair G. McEwan, Christina L. George, Stuart J. Ferguson and J. Barry Jackson

Department of Biochemistry, University of Birmingham, PO Box 363, Birmingham, B15 2TT, England

Received 27 October 1982

We have isolated from a laboratory strain of *Rhodopseudomonas capsulata* a spontaneous mutant possessing a dissimilatory NO₃ reductase activity. Reduction of NO₃ under dark and anaerobic conditions generated a membrane potential, and was inhibited by rotenone, oxygen and illumination.

Nitrate dissimilation

Photosynthetic bacteria

Electron transport

1. INTRODUCTION

Many species of the purple non-sulphur photosynthetic bacteria are capable of NO₃ assimilation, but only a few, including a strain of Rhodopseudomonas sphaeroides isolated enrichment on NO₃ media [1], and some strains of Rps. palustris [2], are capable of growth by dissimilation of NO₃. Of 9 strains of Rps. capsulata examined, 7 were capable of NO₃ assimilation but none could grow using NO_3^- as an electron acceptor under anaerobic-dark conditions [2,3]. Here, we show that repeated phototrophic subculturing of a laboratory strain of Rps. capsulata on a medium containing NO₃ results in the appearance, presumably by mutation, of a hitherto unrecognised dissimilatory NO₃ reductase activity. This observation enlarges the known repertoire of this 'most versatile prokaryotic organism' [4] and may help to rationalise other observations on NO₃ reductases of Rhodospirillaceae in the literature.

2. MATERIALS AND METHODS

Rps. capsulata strain St Louis and a green mutant, N22, isolated from it, were obtained originally from O.T.G. Jones (Department of Biochemistry, University of Bristol). Single colony

isolates from our stock cultures of these strains and of the NO₃-reducing mutant were grown phototrophically at 30°C in the medium of [5], except that (NH₄)₂SO₄ was replaced by 14 mM NaNO₃. Cells for experiments were grown by inoculating ~15 ml of a 24 h culture into a completely filled 300 ml flat-sided bottle that was positioned at 30 cm from each of two banks of 100 W tungsten bulbs. Cells were harvested after 24-28 h, when they were at a late stage of logarithmic growth as judged by A_{650} , and then washed and finally resuspended in the same medium as used for growth except that NO₃ was omitted. The cells were stored in the dark as a thick suspension on ice and the bacteriochlorophyll content was determined as in [6]. NO₂ was determined as in [7].

3. RESULTS AND DISCUSSION

We described the kinetics and inhibitor sensitivities of the assimilatory, light-dependent uptake of NO_3^- by cells of *Rps. capsulata* N22 [8]. These experiments were performed on cells which had been adapted to growth on NO_3^- as nitrogen source after transfer from medium containing NH_4^+ . Routinely the cells were harvested after 2-5 transfers (10-20% inoculum at 24h intervals) following the switch of nitrogen source.

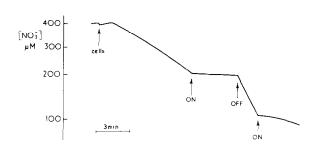


Fig. 1. Reduction of NO₃ by Rps. capsulata in the dark and inhibition by light after repeated serial phototrophic subculture of cells on media containing NO₃. Growth medium (14 ml) deficient in both NO₃ and NH₄ were pre-incubated in a vessel fitted with a NO₃ electrode [8] at 30°C under an atmosphere of argon. The electrode response was calibrated by the addition of aliquots of NaNO₃ to 400 µM final conc. Cells were added to give final bacteriochlorophyll conc. 12.5 µM. Photosynthetic exciting light from a 150 W quartz halogen lamp, filtered through 3 cm water and one layer of Wratten 88A gelatin filter was switched on and off where shown.

We have now discovered that after repeated, daily transfer in NO₃ medium for ~4 weeks, the character of NO₃ uptake in harvested cells changed dramatically (fig. 1). In marked contrast to the original N22 cells, the NO₃ reductase was active in the dark, produced NO₂ stoichiometrically with NO₃ disappearance, was strongly inhibited by light (fig. 1) and was no longer inhibited by NH₄ (cf. [8]). We have observed identical changes over a similar period by cells of the parent strain *Rps. capsulata* St Louis.

Cells derived from Rps. capsulata N22 that had dark NO₃ reductase activity produced round, green colonies, characteristic of the original bacteria, on agar plates. Isolates from single colonies were still capable of dark NO₃ reduction. One such isolate, designated Rps. capsulata N22DNAR⁺, was used to provide cells for subsequent experiments. Phase contrast micrographs of and N22 cells were inthe N22DNAR⁺ distinguishable and resembled the micrographs in [5], except that the zigzag cell arrangement was less pronounced. Additional evidence that we had isolated N22DNAR⁺ from N22 was that the visible absorbance spectrum of membranes prepared from cells by sonication was indistinguishable from a

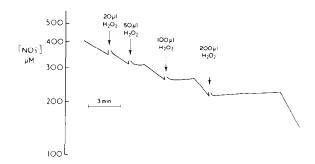


Fig. 2. Inhibition of NO_3^- reduction by O_2 in *Rps. capsulata* $N22DNAR^+$. Conditions as in fig. 1 except that bacteriochlorophyll was $22.5\,\mu\text{M}$ and the initial NO_3^- was $600\,\mu\text{M}$ (the initial part of the trace is not shown). The arrows show the addition of aliquots of 1 vol. H_2O_2 which were rapidly converted to O_2 by endogenous catalase activity.

spectrum of membranes from N22 cells. This spectrum is highly characteristic of mutant N22 because of the partial deficiency in carotenoids.

Fig. 2 shows that O₂ strongly inhibited NO₃ reduction in N22DNAR⁺ cells; no inhibition by O₂ of the light-dependent NO₃ reduction in N22 cells can be observed. The effect of O2 means that the slight delay in fig. 1 before the onset of NO₃ reduction can be attributed to the time required for reduction or residual inhibitory O₂. NO₃ reduction by N22DNAR⁺ cells was inhibited strongly by concentrations of rotenone that had a similar effect on the rate of electron flow to O2, but sufficient antimycin to block cyclic electron flow through the ubiquinol-cytochrome c oxidoreductase had no effect on NO₃ reduction. Thus electrons for reduction of NO₃ originated from the rotenone-sensitive NADH dehydrogenase but did not pass through the antimycin-sensitive segment of the electrontransfer chain.

Fig. 3 shows the uptake of the butyltriphenyl-phosphonium (BTPP⁺) cation in response to the generation of a membrane potential ($\Delta\psi$) by either light-dependent cyclic electron flow or respiratory electron flow to O_2 or electron flow to added NO_3^- (cf. [9]). A second method for detecting $\Delta\psi$ in Rps. capsulata is to measure the electrochromic shift in the carotenoid spectrum [9]. Fig. 4 shows that addition of NO_3^- to a dark, anaerobic suspension of N22DNAR⁺ cells resulted in a carotenoid band shift. Both methods for detecting $\Delta\psi$ show that

electron flow to NO_3^- generated a lower $\Delta\psi$ than either cyclic or aerobic dark electron flow, but quantitative comparison between the two methods is not justified because cells with differing specific NO_3^- reductase activities were used for the two types of experiment. As carotenoid band shifts are only seen in certain species of photosynthetic bacteria, their observation adds to the evidence

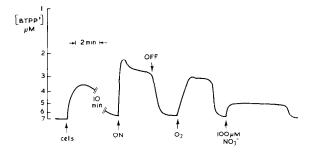


Fig. 3. Uptake of BTPP⁺ by N22DNAR⁺ cells in response to light-driven cyclic electron flow and respiratory electron flow to either O_2 or NO_3^- . Conditions as in fig. 1 except that the BTPP⁺ electrode [9,12] was calibrated by additions of BTPP⁺ in steps of $1-7\mu$ M final conc. in the absence of NO_3^- . Cells were added to give final bacteriochloropyll conc. 26μ M and incubated until essentially complete anaerobiosis was achieved as judged by the cessation of efflux of BTPP⁺ that was initially taken up by the cells. Illumination and oxygenation were as in fig. 1 and 2.

that N22DNAR⁺ is derived from N22 and is not a contaminant.

Neither uptake of BTPP+ nor a carotenoid band shift was observed upon addition of NO₃ to N22 cells. Both the NO₃-dependent BTPP+ uptake and NO₃-dependent carotenoid band N22DNAR+ cells were reversed by low concentrations of the uncoupler FCCP. $\Delta \psi$ observed after addition of NO₃ was solely dependent on electron flow to NO₃ because no $\Delta \psi$ was detected by either method upon addition of NO₂. Thus the measurements of $\Delta \psi$ in N22DNAR⁺ cells clearly establish that the NO₃ reductase is linked to a proton translocating electron transfer chain. As NO₂ is the product of NO₃ reduction this activity is classified as dissimilatory, hence the designation DNAR+.

NO₃ reductases can sometimes use ClO₃ as an alternative substrate [10,11]. Addition of ClO₃ to N22DNAR⁺ cells led to a carotenoid band shift (fig. 4), although the initial rate of ClO₃ reduction was ~10% that of NO₃. The band shift and the rate of ClO₃ reduction declined to zero during the following 10–20 min. This may be due to inactivation of NO₃ reductase by a product of ClO₃ reduction (e.g., chlorite) because subsequent addition of NO₃ did not regenerate a $\Delta\psi$, whereas addition of O₂ or illumination produced $\Delta\psi$ -values of equivalent size to those observed before exposure of cells to ClO₃ (fig. 4).

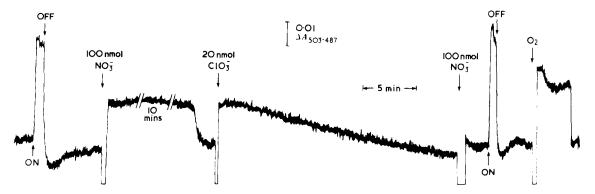


Fig. 4. Carotenoid band shifts in N22DNAR⁺ cells in response to light-dependent cyclic electron flow and respiratory electron flow to NO_3^- , ClO_3^- and O_2 . These were measured using a dual wavelength spectrophotometer (perkin-Elmer model 356) [9]. The spectrophotometer cuvette contained 3 ml growth medium from which both NH₄⁺ and NO₃⁻ had been omitted and through which argon had been passed for 30 min at 30°C. Cells were added to give a final bacteriochlorophyll conc. $26\mu M$, and the suspension was incubated for 15 min under argon and with stirring to allow the suspension to become as anaerobic as possible [9]. Illumination and oxygenation were achieved as in fig. 1,2.

The existence of a ClO_3^- reductase activity, capable of generating $\Delta \psi$, contrasts with the situation in the denitrifier Paracoccus denitrificans. Intact cells of this organism have a very low ClO₃ reductase activity [10,11] and do not take up BTPP+ in response to ClO₃ addition, whereas NO₃ supports uptake [12]. The ability of N22DNAR⁺ cells to reduce ClO₃ suggests either that the permeability barrier that prevents ClO₃ reduction by intact cells of other bacteria [10,11] is less selective in Rps. capsulata, or that the active site of NO₃ reductase in N22DNAR⁺ is at the periplasmic surface of the cell membrane. It has been proposed that the NO₃ reductase of a denitrifying strain of Rps. sphaeroides is a periplasmic and water soluble enzyme [13], in contrast to the membrane-bound NO₃ reductases of denitrifiers.

We have not yet been able to grow N22DNAR⁺ anaerobically in the dark with NO₃ as electron acceptor. Our working hypothesis is that the $\Delta\psi$ generated by electron flow to NO₃ is insufficient to provide the energy necessary for growth. It is possible that dissimilatory NO₃ reduction serves as a supplementary generator of $\Delta\psi$ during photosynthetic growth, particularly in relatively dense, and therefore light-shaded cultures. This is consistent with our findings that:

- (i) The NO₂ concentration in the N22DNAR⁺ growth medium increases dramatically to 7 mM as the cells approach stationary phase;
- (ii) In NO₃ containing medium N22DNAR⁺ grows to slightly higher density than N22.

This hypothesis also accounts for the selective advantage of spontaneous mutants such as N22DNAR⁺ in our cultures which are grown repeatedly to early stationary phase. Presumably *Rps. capsulata* N22 and St Louis have lost by mutation the capacity for dissimilatory NO₃ reduction during prolonged periods of culture on medium lacking NO₃. By analogy with the slow 'adaptations' of *Rps. capsulata* to growth on glycerol and acetate [14–16], N22DNAR⁺ may be provisionally described as a 'gain of function' mutation.

This is the first demonstration of dissimilatory NO_3^- reduction in *Rps. capsulata*, but we believe that the phenomenon may be more widespread

than is generally appreciated. It is interesting that a range of properties for NO₃⁻ reductases from a number of strains of *Rps. capsulata* have been reported [17]. Our results with N22DNAR⁺ suggest that lack of dark anaerobic growth on NO₃⁻ is not a sufficient criterion for concluding that a dissimilatory NO₃⁻ reductase is absent and we suspect that some of these strains may possess dissimilatory NO₃⁻ reductases.

ACKNOWLEDGEMENT

This work was supported by a grant from the UK Science and Engineering Research Council to S.J.F. and J.B.J.

REFERENCES

- [1] Satoh, T., Hoshino, Y. and Kitamura, H. (1976) Arch. Microbiol. 108, 265-269.
- [2] Klemme, J.-H., Chyla, I. and Preuss, M. (1980) FEMS Microbiol. Lett. 9, 137-140.
- [3] Klemme, J.-H. (1979) Microbiologica 2, 415-420.
- [4] Madigan, M.T. and Gest, H. (1979) J. Bacteriol. 137, 524-530.
- [5] Weaver, P.F., Wall, J.D. and Gest, H. (1975) Arch. Microbiol. 105, 207-216.
- [6] Clayton, R.K. (1963) Biochim. Biophys. Acta 75, 312-323.
- [7] Coleman, K.J., Cornish-Bowden, A.J. and Cole, J.A. (1978) Biochem. J. 175, 483-493.
- [8] Jackson, M.A., Jackson, J.B. and Ferguson, S.J. (1981) FEBS Lett. 136, 275-278.
- [9] Clark, A.J. and Jackson, J.B. (1981) Biochem. J. 200, 389-397.
- [10] John, P. (1977) J. Gen. Microbiol. 98, 231-238.
- [11] Kristjansson, J.K. and Hollocher, T.C. (1979) J. Bacteriol. 137, 1227-1233.
- [12] McCarthy, J.E.G., Ferguson, S.J. and Kell, D.B. (1981) Biochem. J. 196, 311-321.
- [13] Sawada, E. and Satoh, T. (1980) Plant and Cell Physiol. 21, 205-210.
- [14] Leuking, D., Tokuhisa, D. and Sojka, G. (1973) J. Bacteriol. 115, 897-903.
- [15] Nielsen, A.M. and Sojka, G.A. (1979) Arch. Microbiol. 120, 39-42.
- [16] Pike, L. (1982) J. Bacteriol. 151. 500-502.
- [17] Wesch, R. and Klemme, J.-H. (1980) FEMS Microbiol. Lett. 8, 37–41.